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Abstract 

The Random Utility Model (RUM) is a workhorse model for valuing new products or changes in 
public goods.  But RUMs have been faulted along two lines.  First, for including idiosyncratic 
errors that imply unreasonably high values for new alternatives and unrealistic substitution pat-
terns.  Second, for involving strong restrictions on functional forms for utility.  This paper shows 
how, starting with a RUM framework, one can nonparametrically set-identify the answers to policy 
questions using only the Generalized Axiom of Revealed Preference (GARP).  When GARP is 
satisfied, the approach set identifies a pure characteristics model.  When GARP is violated, the 
approach recasts the RUM errors as departures from GARP, to be minimized using a minimum-
distance criterion.  This perspective provides another avenue for nonparametric identification of 
discrete choice models.  The paper illustrates the approach by estimating bounds on the values of 
ecological improvements in the Southern Appalachian Mountains using survey data. 
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Valuing Policy Characteristics and New Products using a Simple Linear Program 

H. Spencer Banzhaf 
 
 

1. Introduction 

Valuing policy-induced changes in the attributes of public goods is a common goal in public eco-

nomics and related fields like health and environmental economics.  Examples include Medical 

plans, local public goods, outdoor recreation, and ecosystem services (Keane et al. 2021, Bayer et 

al. 2016, English et al. 2018, Banzhaf et al. 2016).  Similarly, estimating consumers’ values for 

new products is a common goal in industrial organization and marketing.  Examples include new 

automobiles, consumer appliances, and computers (Berry, Levinsohn, and Pakes 2004, Revelt and 

Train 1998, Bajari and Benkard 2005). 

For some 40 years, the standard approach to this problem has been to use a discrete choice 

random utility model (RUM), such as a multinomial logit.  However, these models raise two dif-

ficulties.  First, they give a large role to additive idiosyncratic errors, which in turn can imply 

unrealistic substitution patterns.  It also implies that expected utility always increases in the number 

of alternatives, so adding an alternative—even one dominated in the characteristic space—always 

has value.  Consequently, products always have market power, so markups above marginal cost 

can never be competed away.  Accordingly, Bajari and Benkard (2005) and Berry and Pakes (2007) 

have introduced a pure characteristics model with no idiosyncratic errors at all, only unobserved 

tastes and product characteristics.  However, these models are computationally challenging and 

can be quite sensitive to outlying observations (Athey and Imbens 2007, Gandhi and Nevo 2021). 

A second criticism of discrete choice models is that, in practice, most estimators are highly 

parametric.  Typically, they specify distributions for the additive errors (e.g. logit) and the distri-

bution of tastes for characteristics, as well as a functional form for the utility function.  Much of 

the identification from discrete choice models comes from such assumptions. 

This paper shows how to overcome both problems by relating the RUM framework to the 

Generalized Axiom of Revealed Preference (GARP).  Whereas the RUM framework looks for a 

utility function with patterns of heterogeneity and errors that best explain the observed choices, 

the GARP framework tests whether there is any utility function that can perfectly explain the 
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choices without errors.  If so, it can weakly identify indifference curves and the answers to policy 

questions—in the sense that it can point identify these objects as the sample goes to infinity, but 

for finite samples the estimator can only recover sets of parameters and bound answers to policy 

questions (Lewbel 2019).  For discrete choices, this approach assumes only that utility is strictly 

monotonic and quasi-concave.1 

To see its connection to the RUM approach, two long-standing features of the GARP ap-

proach are especially salient.  First, economists can test GARP using a linear program (LP), which 

also provides a way to construct a candidate utility index non-parametrically (Afriat 1967).  Sec-

ond, if the tests reject GARP, economists can quantify the degree of the rejection using indices 

known as “critical cost efficiency” (Afriat 1972, Varian 1985, 1990).  Such measures typically ask 

how much expenditure would have to be wasted to make the data consistent with GARP, and 

typically appear in an additively separable form.  These two features of the GARP literature are 

well established for competitive budget sets.  However, their implications for RUMs with discrete 

alternatives has not previously been noted. 

With those features in mind, my argument can be summarized in the following steps.  First, 

consider micro-level data with a panel of discrete choices that allows for non-trivial revealed pref-

erence tests.  The “panel” structure of the data may comprise repeated choice observations for each 

individual or a cross section of data but with the individuals considered as part of a panel at a group 

level (e.g. Berry and Haile 2023).  Second, note that if a set of discrete choices is consistent with 

GARP in characteristics space, then we can weakly identify the pure characteristics demand model 

and bound answers to policy questions.  However, it is likely that GARP will be violated in most 

data sets big enough to be of practical use, in which case the pure characteristics model is incoher-

ent.  Accordingly, the third step of the logic is to generalize the model by introducing the adjust-

ments associated with critical cost efficiency.  Crucially, I show that these adjustments are obser-

vationally equivalent to the additively separable, idiosyncratic errors of a RUM.  That is, optimi-

zation mistakes in a model with no idiosyncratic shocks are equivalent to a model without mis-

takes, but with idiosyncratic tastes, a “moment’s fancy,” or quality shocks. 

 
1 The revealed preference approach, begun by Samuelson and extended by Houthakker, Afriat, Varian, and 
others, is now quite large and has been extended to firm behavior, Nash equilibria, and other contexts.  See 
e.g. Chambers and Echenique (2016) and Hands (2014) for overviews and discussion. 
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Unfortunately, introducing such errors nonparametrically has the potential to make the 

model radically incomplete (Kuminoff 2009).  For any candidate utility functions, there are always 

some errors that could rationalize the observed data.  In other words, the identified sets are un-

bounded.  However, this problem can be overcome by assuming that the additive idiosyncratic 

errors of the RUM are, like other econometric errors, objects to be minimized.  They are only there 

to explain why we cannot otherwise perfectly satisfy GARP in characteristics space.  As with 

critical cost efficiency, they are the minimum adjustment to utility (potentially measured in dollars) 

that would rationalize the data.  Completing the link, the model can then be estimated with an LP, 

with the objective to minimize some norm of the errors.  Rather than fitting market shares condi-

tional on an error structure, this way of thinking about the problem inverts the logic and finds the 

pure characteristics model that comes closest to the data, with the residuals being the unexplained 

gaps. 

Even when minimizing the errors, with this minimal structure we may still only be able to 

bound indifference curves.  However, one can also bound functions of indifference curves, and 

thus set-identify the answer to policy questions, in the spirit of Manski (2007, 2010).  Moreover, 

the bounds on the policy questions can conveniently be obtained by “searching” over a domain 

defined by the values which are consistent with GARP, directly within the LP.  Specifically, I 

show how to bound willingness to pay (WTP) for policy changes in characteristic space or new 

products. 

I illustrate this approach with an application to the valuation of ecosystem services in the 

Southern Appalachian Mountain area of the southeastern United States, previously analyzed using 

traditional logit models (Banzhaf et al. 2016).  The ecosystems in that region have been damaged 

by years of acid precipitation.  A survey of the area’s residents elicited preferences for various 

investments to improve different dimensions of the ecosystem (including the health of streams, 

forests, and bird populations).  The survey was set up as a series of choice experiments, over which 

respondents chose their preferred option from a menu.  Analyzing these data using the nonpara-

metric approach posed here, and allowing for heterogeneity across households, I find the average 

household’s WTP for a given set of improvements can be bounded between $44 and $210, com-

pared to $49 for a mixed logit, which imposes stronger assumptions.  The average absolute error 

in the non-parametric model, when monetized, is about $0.46, compared to $75 in the mixed logit.  

Moreover, 98% of observations require no error et all, and 88% of households require no error for 
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any of the alternatives they face.  Thus, in this application, the pure characteristics model is much 

closer to the data that standard RUMs give it credit for. 

This paper is related to the existing literature in at least four ways.  First, it relates to work 

that extends GARP to discrete goods.  Blow, Browning, and Crawford (2008) showed how GARP 

can be extended from goods space to Gorman-Lancaster characteristics space.  They considered 

the value of new products, but still assumed choice sets were continuous.  Polisson and Quah 

(2013) and Cosaert and Demuynck (2015) extend GARP from the usual competitive budget sets, 

which are convex, to discrete choice sets.  I rely on their results, but also extend them by introduc-

ing additive errors and by showing how their results can help bound economic questions in char-

acteristics space. 

Second, this paper is related to recent work on identification of discrete choice models.  

Berry and Haile (2016, 2023) emphasize that identification of demand in such models is built on 

nonparametric foundations, and several results have pushed in that direction.  Fox et al. (2012) 

consider semi-parametric identification of the distribution of tastes for characteristics, within the 

mixed logit model.  Shi, Shum, and Song (2018) show how to semi-parametrically identify average 

tastes for characteristics with minimal assumptions on the distribution of idiosyncratic errors, ex-

cept for additive separability and a continuous distribution function.  However, they impose a lin-

ear form for the utility function and restrict the admissible distribution of observed characteristics.  

Allen and Rehbeck (2019) nonparametrically identify average demands via a representative con-

sumer.  Their approach bears some similarity to mine insofar as it imposes the integrability condi-

tions on this consumer, which are comparable to GARP.  However, for welfare analysis, it requires 

restrictions to guarantee that the representative consumer is normative.  In contrast, my approach 

makes no assumption on the distribution or continuity of the distribution of idiosyncratic errors 

(which, in fact, will have a large probability mass at zero), makes no assumption about the func-

tional form for utility, and recovers information on the distribution of tastes.  However, in general 

it only weakly identifies demands. 

One limitation of my approach is that, although it can account for an index of unobserved 

product characteristics, it assumes they are independent of observed characteristics.  This assump-

tion is consistent with McFadden’s early work on logit models and with more recent work by 

Lewbel, Linton, and McFadden (2011) and Allen and Rehbeck (2019).  It is applicable to cases 
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where one is working with plausibly exogenous distances as the price (e.g., Beckert, Christensen, 

and Collier 2012, English et al. 2018) or experimentally controlled data as in a survey, which I use 

in my empirical application.  However, it will be problematic in cases where price or other char-

acteristics are endogenous.  Future work might consider imposing additional exclusion restriction, 

as emphasized by Berry and Haile (2016, 2023) and in the spirit of Blundell, Browning, and Craw-

ford (2003). 

Third, this paper relates to other work on non-market valuation in environmental and other 

settings.  Adamowicz and Graham-Tomasi (1991) use revealed preference methods to test ration-

ality in outdoor recreation behavior in the context of the travel cost model.  Crooker and Kling 

(2000) use them to gauge the plausibility of functional forms for parametric methods.  Blow and 

Blundell (2018) use them to gauge the plausibility of benefits transfer exercises.  Of especial rel-

evance, Kuminoff (2009) set identifies parameters within a structural model, following Manski 

(2007).  I extend this body of work by introducing RUM errors as critical cost efficiency indices 

of GARP violations.  I also extend it by considering non-parametric bounds on WTP, without 

functional form assumptions. 

Finally, this paper relates to the non-parametric testing of RUMs (McFadden 2005, 

Kitamura and Stoye 2018) using an axiom of revealed stochastic preference.  However, in some 

ways it takes the opposite approach.  Rather than test axiomatically whether an entire sample of 

data could be generated by a random utility function, it tests whether individual responses could 

be generated from non-random utility functions, and generates a random utility function through 

least deviations from such functions. 

The paper proceeds along the following outline.  Section 2 introduces the intuition with a 

simple linear-in-parameters structural model, set identified through GARP rather than point iden-

tified with distributional assumptions on the errors.  It begins by assuming the observed choice 

behavior does satisfy GARP, and hence that there is no need for additive errors.  It then derives 

bounds on the policy questions of interest.  Finally, it introduces unobserved product characteris-

tics into the model, as in Bajari and Benkard (2005) and Berry and Pakes (2007). 

Section 3 introduces idiosyncratic errors into the linear model, to rationalize the data when 

GARP is violated, using the logic of critical cost efficiency.  Section 4 relaxes the linearity as-

sumption, making the model fully nonparametric, with only the assumption of additive errors.  
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Section 5 offers an application, estimating WTP for improvements to ecosystem service in the 

southern Adirondack mountains in the United States.  It compares the GARP-based approach to 

more traditional logit models.  Section 6 concludes. 

2.  Set Identification of the Linear Pure Characteristics RUM 

This section introduces and develops the basic intuition using the canonical linear RUM, before 

eventually relaxing any functional form restrictions in Sections 4.   

2.1.  Set Identifying a Random Coefficients RUM 

Consider the following utility function: 

(1) vijt  =  α(yit – pjt) + 𝛃ഥ'xjt + uijt,  

where vijt is the utility for household i conditional on choosing alternative j in period t, yit is income 

in period t and pjt is the price of product j in period t (so yit – pjt is numeraire consumption) and xjt 

is a vector of K other observed characteristics (x1, …, xk, …, xK) for the product/period.  The j 

alternatives could be products, residential locations, or simply policy scenarios.  The utility pa-

rameters include α > 0 and 𝛃ഥ ≥ 0.  These sign restrictions imply utility is strictly increasing in the 

numeraire and non-decreasing in all x.  (This is a harmless normalization as we can always model 

bads as absence of goods.)  Note additionally that, though this is a very simple linear model, it 

easily can be extended to any linear-in-parameters model in the usual way.  Given the sign re-

strictions and the linearity assumption, utility is strictly monotonic and concave.2  Finally, an out-

side option (p0t = 0, x0t = 0) is normalized to have vi0t = 0 ∀ i,t. 

As written in the general form of Equation (1), the errors uijt may have at least three inter-

pretations.  First, they could be random idiosyncratic errors:  uijt = εijt, as for example in the multi-

nomial logit model (McFadden 1981).  Second, they could reflect unobserved product attributes: 

uijt = μj (Berry, Levinsohn, and Pakes 1995, 2004, Berry and Pakes 2007, Bajari and Benkard 

2005).  Third, they could reflect heterogeneity in tastes for x, as in the mixed logit model (Berry, 

 
2 With competitive budget sets, monotonicity and concavity are observationally equivalent to local non-
satiation, given a finite set of observations (Afriat 1967).  However, as Cosaert and Demuynck (2015) 
discuss, this equivalence no longer holds with discrete budget sets, because an open ball around some choice 
alternative might not be in the choice set.  Accordingly, I impose strict monotonicity (utility is non-decreas-
ing in all goods and increasing in income) and quasi-concavity throughout this paper. 
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Levinsohn, and Pakes 1995, Revelt and Train 1998, McFadden and Train 2000).  In that case, uijt 

= 𝛃෩ 'xjt, where individual i’s taste vector is 𝛃 = ൫𝛃ഥ + 𝛃෩൯, with 𝛃ഥ interpreted as the population 

average taste and 𝛃෩ the departure from the average.  Or any combination of these.  From the 

perspective of this paper, the first of the three interpretations (idiosyncratic errors) differs from the 

other two in that there are always values for such errors that guarantee we can rationalize the data. 

To develop the argument, in this section I initially assume the data are rationalizable with-

out needing either idiosyncratic errors or unobserved product characteristics to explain observed 

choices, and thus temporarily omit them from the model.  I thus assume the errors reflect only 

heterogeneity in 𝛃.  This is a reasonable starting point, as much of the previous work on revealed 

preference in characteristics space also has taken this approach, including Manski (2007), Blow, 

Browning, and Crawford (2008), Polisson and Quah (2013), and Cosaert and Demuynck (2015). 

With these initial assumptions, we can write the model as: 

(2) vijt  =  αi(yit – pjt) + 𝛃 'xjt,  

with αi > 0 and 𝛃 ≥ 0.  Furthermore, we can take an affine transformation of this utility function 

by dividing by αi and subtracting yit: 

(3) vijt  =  –pjt + 𝛃 'xjt. 

With this renormalization the coefficients 𝛃 can be interpreted as individual-specific marginal 

WTP for the attributes x, as they are now relative to the marginal utility of money.  Additionally, 

we’ve conveniently eliminated the strict inequality constraint on αi.3 

Note this model nests several special cases, including the simplest case of total homogene-

ity (𝛃 = 𝛃 ∀ i) or observed heterogeneity (𝛃 = 𝛃௭′𝐳 for some vector of observables 𝐳).  Thus, 

although revealed preference approaches always require repeated observations, the model allows 

for several kinds of data sets, each with its respective interpretation of the panel.  If only a cross 

section of data (or repeated cross sections) are observed, one could take one of these two special 

cases.  Or, one could define a group by some set of observables, and think of i as the group, with 

individuals within the group being treated like repeated observations from the same preference 

 
3 Technically, the 𝛃 in (3) might better be written by 𝛃ෙ, but for simplicity I abuse the notation. 



-8- 
 

ordering.  The most general case is individual-level panel data, which allows for unobserved het-

erogeneity (i.e., 𝛃 as random coefficients).4  In my application to ecosystem services, these data 

are available.  Accordingly, for concreteness, I will use the language of this kind of setup, though 

the others are also possible. 

Each household i (i = 1…I) faces T(i) choice occasions indexed by t(i)=1…T(i), chooses 

from a choice set J(i,t) at each choice occasion t, and actually chooses alternative j'(i,t) ∈ J(i,t) at 

choice occasion t(i).  At each choice occasion t the household chooses alternative j'(t) if and only 

if vi,j'(t) ≥ vi,j ∀ j ∈ J(i,t).  Substituting Equation (3) into this condition, re-arranging, and considering 

all choice occasions in the data, we have: 

(4) βi'(xj'(i,t)t - xjt)  ≥  pj'(i,t)t - pjt,  ∀ i, ∀ t, ∀ j ∈ J(i,t). 

That is, household i’s utility for the product chosen at any choice occasion must be at least as great 

as the utility of all other products in that occasion’s choice set. 

We will say the data are “rationalizable by a linear utility function,” or “linearly rational-

izable” for short, if there is a linear utility function that explains the choice patterns observed in 

the data, as well as patterns of monotonicity (A is preferred to B, regardless of observed choices, 

if it dominates in every dimension).  Following the revealed preference approach, utility maximi-

zation is equivalent to satisfying a set of choice axioms, to the effect that if households choose a 

bundle A on one occasion when B is available (so that A is revealed to be at least as good as B), 

then there is no sequence of choices such that B is ever indirectly revealed preferred to be strictly 

better than A.  More formally, using the notation A ≿R B to mean “A revealed at least as good as 

B” and A ≻R B to mean “A revealed strictly preferred to B,” then A ≿R B implies there is no 

sequence B ≿R C ≿R . . . ≿R D ≿R A with one of the relations being strict in the sequence.  Thus, 

GARP assures that there is a no-cycling condition on choice patterns.  Simplifying the problem, 

Afriat (1967) showed that the no-cycling condition is equivalent to the existence of a solution to 

 
4 Panel data are necessary to identify random coefficients using the non-parameteric GARP approach of 
this paper, whereas, by identifying off functional form and distributional assumptions, the conventional 
MLE approach to RUMs can identify even random coefficients models in a cross section.  Similar issues 
arise in other contexts for testing GARP and bounding policy questions, motivating Blundell, Browning 
and Crawford (2003, 2008) to nonparametrically adjust budget sets for income differences, to make differ-
ent choice occasions comparable.  While motivated by a similar data problem, their solution is not directly 
relevant to my application, as I focus on a single differentiated product, for which budget-balancedness 
need not hold. 
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an LP.  His approach relies on the equivalence of GARP and, for competitive budget sets, the 

existence of utilities for bundles and marginal utilities of income that explain choice patterns.  

Polisson and Quah (2013) and Cosaert and Demuynck (2015) extend Afriat’s approach to discrete 

choices. 

The linearity assumption in this section greatly simplifies the problem:  The data are line-

arly rationalizable if and only if ∃ βi ≥ 0 satisfying Expression (4).  Equivalently, there must be 

some solution (possibly a continuum of solutions) to an LP to minimize the degenerate objective 

βi'0, subject to the inequalities given by Expression (4) and the non-negativity constraints.  In other 

words, Expression (4) represents the Afriat inequalities for this model.  Without additional distri-

butional assumptions about the random coefficients, this is all we can say about the βi.  That is, 

the set of {βi | βi ≥ 0} consistent with utility maximization (and the functional form specified in (3)) 

are all those satisfying Expression (4).  However, intuitively, the sets shrink as we observe more 

data.  This intuition introduces an alternative argument for identification of the discrete choice 

model. 

This logic can be summarized more formally by the following theorem: 

Theorem 1  (weak identification).  If the data are generated from utility-maximiz-
ing individuals with linear utility, as in expression (3), then the data are linearly 
rationalizable for each individual i, and the distribution of βi is set identified by {βi 
| βi ≥ 0 and βi'(xj’(i,t)t - xjt)  ≥  pj'(i,t)t - pjt}.  Moreover, if x is distributed over contin-
uous support, then as the set of observed alternatives in the data increases and be-
comes dense, each set {βi} converges to its true value.  Thus, the individual random 
coefficients are point identified in the limit. 

Proof:  The first part of the theorem is just an application of Afriat’s Theorem (Afriat 1967) 
and follows immediately from Expression (4).  To prove the second part, on convergence, 
let {xj'(i,t)t, J(i,t)}t → {βi} be the correspondence mapping the data to the set of parameters 
that satisfy GARP (which by the premise of the theorem is non-empty).  Next, consider 
some true 𝛃෩i, some xj ∈ J(i,t), the set ~xj = {x | 𝛃෩i'x = 𝛃෩i'xj} and the set {𝐱ො} = {x | β'x = 
β'xj, for all β ∈ {βi}}.  The first of these sets is the true indifference set for xj; the second 
comprises the candidates for the indifference set given the data.  Now, consider a sequence 
l which adds additional data points to the choice set J(i,t).  Given the continuous support 
for x, as l → ∞, there will be x ∈ {𝐱ො}l-1, J(i,t)l, which, by completeness, is either in the no-
worse-than set or no-better-than set for xj, thus removing regions from {βi}.  As the mini-
mum distance in ℝK between the hyperplane defined by ~x and an element in J(i,t)l shrinks 
to zero, the set {βi} → 𝛃෩i.  In the limit, as J(i,t)l becomes dense, there are K-1 linearly 
independent elements from ~xj and {βi} = 𝛃෩i. 

The basic intuition of the proof follows the logic first introduced by Mas-Collel (1978) for 
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competitive budget sets, adapted to the case of linear utility and discrete choices in characteristics 

space.  The proof uses large-J asymptotics, but a similar argument could be constructed using 

large-T, i.e., repeated choice occasions, so long as each choice occasion involves an independent 

draw from the space of possible choice sets. 

As noted above, if the data are rationalizable, all we can accomplish with finite data and 

without further structural assumptions is to set identify each βi.  Figure 1 illustrates this point with 

an example in K=1 and three alternatives, a status quo option (SQ), {p1, x1}, and {p2, x2}.  In this 

example, we observe {p1, x1} ≻R SQ ≻R {p2, x2}.  The shaded area depicts the set {βi} consistent 

with these data.  The linear indifference curve going through the SQ option could lie in any part 

of this shaded area.  The absolute values of the slopes of such indifference curves reflect the pos-

sible WTP for attribute x. 

Nevertheless, it is reassuring that, as the data set becomes large for each i, the identified 

set converges.  This second part of the proposition is illustrated in Figure 2.  In this example, x3 

and x4 now enter J, and we observe {p3, x3} ≻R SQ ≻R {p4, x4}.  Now the light shaded areas can 

be eliminated, and the set {βi} shrinks to the darker shaded area, closing in on the true indifference 

curve shown.  However, the rate of convergence is not known. 

--------------------------------------------------------------- 

Last minute addition:  insights on convergence from simulations – see appendix 

Upshot -- The simulations illustrate weak convergence in principle but also highlight the practical 

importance of optimal sampling, so that the new observations are informative. 

--------------------------------------------------------------- 

2.2.  Bounding WTP 

Even when indifference curves are only set identified, we can construct bounds on policy questions 

defined by scalar-valued functions of β (Manski 2010).  To do so, we need only change the objec-

tive function of the above LP, while satisfying the same Afriat inequalities.  In this sub-section, I 

consider two such policy questions: (i) the WTP to switch to a new policy scenario, such as a 

change in the vector of public goods; and (ii) the highest price that can be charged for a product 

competing against a set of substitutes. 
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Value of a new policy scenario 

Suppose we are interested in the WTP for an alternative with characteristics x* when the only other 

alternative is the outside option.  For example, suppose x is a vector of public goods and we wish 

to know individuals’ WTP for a policy moving x from the status quo to some x*.  Note that in this 

linear model the status quo can always be renormalized to the outside option by subtracting the 

status quo values of x from each alternative, so characteristics now represent changes.   

Since each candidate utility function implies a unique WTP, it is easy to see that since 

utility is weakly identified in this model so is WTP.  Moreover, the following theorem shows how 

we can construct bounds on WTP for such a policy question. 

Theorem 2.  If the data are linearly rationalizable and the set of {βi} rationalizing the data 
is bounded, then the WTP for some counterfactual scenario characterized by x*, relative to 
the status quo, can be bounded by solving the two linear programs: 

Max{βi} ∑iβi'x* and respectively Min{βi} ∑iβi'x*,  

subject to βi ≥ 0 and inequalties (4). 

Proof.  Note first that the set {βi | βi'(xj'(i,t)t - xjt)} ≥ pj'(i,t)t - pjt} ∀ t, ∀ j ∈ J(i,t) is the intersection of 
half spaces, so it is a convex polytope.  Because it is bounded as well, the set of {βi} satisfying 
GARP is compact.  Then the objective described in the proposition is to maximize (resp. minimize) 
a continuous function defined on a compact set.  By the extreme value theorem, there is a solution 
to this program, and it is the arg-max (resp. arg-min) of the function. 

Figure 3 illustrates Theorem 2, assuming as in Figure 1 that we observe {p1, x1} ≻R SQ ≻R {p2, 

x2}.  Steeper candidate indifference curves in the shaded region represent higher marginal WTP 

for x; flatter curves represent lower marginal WTP.  Therefore, we simply “search” over all indif-

ference curves satisfying GARP to find the highest and lowest.  The figure shows the highest and 

lowest WTP, consistent with the data, that would make the individual indifferent to x* or the status 

quo—that is, the range of feasible WTP. 

To implement this LP, we need to assure that the set of {βi} satisfying GARP is bounded.  

Without additional restrictions, it may not be.  For example, the (finite) data for a particular house-

hold may show it always chooses the alternative with the highest value of some attribute k, regard-

less of price.  In that case the set of {βik} satisfying GARP would be unbounded from above.  A 

practical solution is to set some arbitrary (but defensible) upper bound on the support for β through 

additional inequalities.  Equivalently, one could set an upper bound through one additional con-

straint on the maximal permissible WTP, β'x* ≤ WTPmax.  When the {βi} are actually unbounded 
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but such a constraint is imposed, the above procedure will then return the upper bound of the 

support.  At the researchers’ discretion, values at the boundary could be flagged. 

Pricing a product 

Another policy question of interest is the highest price a consumer would pay for a discrete 

product with characteristics x* when facing some choice set J* in some period t*.  This is still a 

WTP, but in the presence of more substitutes.  Such a question might still be useful in the context 

of public policy, when an agency is offering a program into which households can select, or in the 

context of a local government changing a vector of local public goods when households can sort 

into that jurisdiction or others.  But it also pertains to industrial organization, where we are inter-

ested in the price the market will bear for a product.  The following two-part theorem shows how 

we can construct bounds for such questions. 

Theorem 3A.  If the data are linearly rationalizable and the set of {βi} rationalizing 
the data is bounded, then the upper bound on the WTP for a product x* is determined 
by the linear program: 

Max൛𝛃,
∗ൟ ∑ 𝑝

∗
  , subject to: 

𝛃 ≥ 0, 

Inequalities (4), and 

(5) -𝑝
∗ + 𝛃 'x

*  ≥  -𝑝௧ + 𝛃 'xjt,  ∀ i, ∀ j ∈ J*, and for t = t*. 

That is, we are looking for the highest price pi
* that would satisfy the participation constraint (5) 

that household i would choose the product x* from the choice set J*.  At the same time, we are free 

to choose βi to make the product as valuable as possible, so long as the βi are consistent with the 

observed choice patterns in the sense of satisfying GARP, i.e. consistent with expressions (4).  

Mechanically, Expression (5) is just like (4), only it is not conditioned by the observed data, but 

rather a hypothetical condition requiring the new product to be (weakly) preferred when priced at 

WTP.  Accordingly, we can just add an additional “observation” to the data that states the house-

hold chooses x* at a price pi
* out of choice set J*, and then find the highest value of pi

* that still 

satisfies GARP. 

To find the lower bound, we cannot just minimize the same objective, because we are not 

looking for the lowest possible price we could charge for a product such that consumers buy it 

(which might be low, indeed!).  We are looking for the lower bound, consistent with the data, on 
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the highest price we can charge.  However, we can obtain this by reversing the sign in the partici-

pation constraint. 

Theorem 3B.  If the data are linearly rationalizable and the set of {βi} rationalizing 
the data is bounded, then the lower bound on the WTP for a product x* is determined 
by: 

pi
* = min

∈𝒥∗
൜min

𝛃ஹ
൛𝛃′൫𝐱∗ − 𝐱௧∗൯ + 𝑝௧∗ൟൠ, subject to: 

βi ≥ 0 and  

Inequalities (4). 

Proof.  For a given 𝛃, the highest price we can charge i for 𝐱∗ in period 𝑡∗ is 𝛃′𝐱∗ −

max∈𝒥∗൛−𝑝௧∗ + 𝛃′𝐱௧∗ൟ, which is the consumer surplus for 𝐱∗ relative to the best alter-

native.  This is equivalent to min
∈𝒥

൛𝛃′൫𝐱∗ − 𝐱௧∗൯ + 𝑝௧∗ൟ.  By continuity and monotonicity 

of v, the greatest lower bound on the household’s maximum willingness to pay is the lowest 

possible value of this expression, subject to GARP. Thus, we seek min
𝛃ஹ

൜min
∈𝒥∗

൛𝛃′൫𝐱∗ −

𝐱௧∗൯ + 𝑝௧∗ൟൠ  =  min
∈𝒥∗

൜min
𝛃ஹ

൛𝛃′൫𝐱∗ − 𝐱௧∗൯ + 𝑝௧∗ൟൠ such that inequalities (4) are satisfied.   

While the double min{} function may at first look daunting, note that, in practice, we can simply 

solve the LP min
𝛃ஹ

൛𝛃′൫𝐱∗ − 𝐱௧∗൯ + 𝑝௧∗ൟ separately for each alternative 𝑗 ∈ 𝒥∗ and then find the 

minimal value of the solution over 𝒥∗.  Potentially, the value may be negative, but this is a com-

pletely valid finding:  we might have to pay a household to induce it to use a product instead of its 

favorite alternative. 

Figure 4 illustrates the procedure, for the same data as Fig. 3 (but relabeling the status quo 

as the “outside option).5  A new product is shown with higher x than any other existing product.  

Because {p1, x1} is the customer’s current choice, that is the one the new product must outcompete.  

Because the new product has higher x than x1, we know for sure we can charge a higher price than 

p1.  In fact, we can charge at least pmin shown in the figure, because that is on the linear indifference 

curve associated with the lowest value x1 consistent with the data and GARP.  We can charge no 

more than pmax, as that is associated with the highest WTP for x consistent with the data.  How do 

we know this?  The slope of the line going through x2 represents the highest value of x consistent 

 
5 The label “status quo” may be somewhat inapt here, but I keep it for comparability to the previous examples.  In can 
be thought of as an arbitrary product, or perhaps the firm’s current product design. 
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with the data, but we need to outcompete x1, not x2.  So we translate that marginal willingness to 

pay through x1 as shown by the dashed blue line in the figure. 

The solutions bound the revenue that a firm could obtain under perfect price discrimination.  

Bounding revenue for a single-price monopolist (or oligopolist in Bertrand competition) would 

involve taking the solutions as bounds on discrete demand functions and searching for the revenue-

maximizing prices.   

2.3.  Introducing Unobserved Quality into the Model 

So far, we have assumed the econometrician observes all relevant information about the choice 

alternatives faced by households.  However, if they are reacting to unobserved characteristics, 

households may appear to violate GARP even when they are behaving rationally, and the sets of 

β will be misidentified.  In their application to computers, for example, Bajari and Benkard (2005) 

found that, even with 19 characteristics included in x, over half of the data could not be rationalized 

by a linear utility function with no errors (see also Kuminoff 2009 for discussion).  One response 

to this problem is to introduce idiosyncratic errors, as in most RUMs, which I will consider in 

Section 3.  First, however, consider the possibility of adding only a vertically differentiated unob-

served quality attribute. 

In particular, consider the following pure characteristics model from Bajari and Benkard 

(2005) and Berry and Pakes (2007): 

(6) vijt  =  -pjt + βi'xjt + λiξj,  

where ξj is an unobserved time-invariant characteristic and λi ≥ 0 is a household-specific weight.6  

The unobserved characteristic ξ can be thought of as an index of multiple characteristics, so long 

as the underlying index is the same for everybody.  Additionally, utility is monotonic in ξ, so the 

unobservables differentiate products vertically.  Nevertheless, it is easy to see how the model can 

be interpreted as a RUM with uijt = λiξj. 

We can still bound the value of existing products or policy scenarios using this model.  For 

example, following the outline of the previous sub-section, we can bound the value of some prod-

uct {x*, ξ*} relative to an outside option by solving the following program: 

 
6 Note we can normalize λi = 1 for one household and ξj = 0 for one product (such as the outside option). 
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Max൛𝛃,ఒ,కೕൟ (respectively Min{𝛃,ఒ,కೕ}):  ∑i(βi'x*) 

subject to  

βi ≥ 0, λi ≥ 0, and  

(7) -pj'(i,t)t + βi'xj'(i,t) + λiξj'(i,t)  ≥  -pjt + βi'xjt + λiξj, ∀ i, ∀ t, ∀ j ∈ J(i,t). 

Here, the Inequalities (7) replace (4) as the Afriat inequalities, simply adding λiξj.  It would be 

straightforward to answer other economic questions using a similar strategy. 

Three remarks are worth making.  First, in taking ∑iβi'x* as the objective, I assume here 

researchers will want to set ξ*=0 for the new product, but this is not necessary.  One could incor-

porate an arbitrary value of ξ* or place it at some percentile of the distribution.  Second, the bilinear 

terms λiξj in (7) require quadratic (rather than linear) programming.  However, the objective re-

mains convex.  Third, we now must impose an assumption of mean independence between the ξj 

and x.  Normally, in econometric practices, such an assumption is simply assumed.  Here, because 

the ξj are solved for, we need to impose it in the program.  In practice, we can do this by binning 

the joint distribution of x into cells c=1…C, and imposing the additional constraint that 

ଵ

∑ ଵೕ∈

∑ 𝜉∈  is equal for all c (i.e., the mean 𝜉 is equal across all cells). 

It may be possible to generalize the model further.  Using the notation 𝛃 = ൫𝛃ഥ + 𝛃෩൯ and 

μij = fi(ξj)+𝛃ഥ′𝐱, where fi( ) is any increasing function, we can re-write Equation (6) as: 

(8) vijt  =  -pjt + 𝛃෩ 'xj + μij, 

with the restriction: 

(9) (μij - μij')(μi'j - μi'j')  ≥  0 ∀ i,i', ∀ j,j'. 

That is, households rank the ξj in the same order:  For any two households i,i' and any two products 

j,j', if fi(ξj)+𝛃ഥ′𝐱 ≥ fi(ξj’)+𝛃ഥ′𝐱ᇲ  then fi'(ξj)+𝛃ഥ′𝐱 ≥ fi'(ξj')+𝛃ഥ′𝐱ᇲ .  However, in general this quadratic 

program is non-convex and may be difficult to solve.7  

 
7 Too, without imposing additional identifying restrictions on the joint distribution of {x, ξ}, we would no longer 
identify the mean tastes for the product 𝛃ഥ separately from fi(ξj).  However, recovering the parameter μij is sufficient 
information for many policy questions. 
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3.  When GARP is Not Satisfied:  Rationalizing the Data with Minimal Idiosyncratic Errors 

If the data do not satisfy GARP, the model to this point will be incoherent:  no values of β will 

satisfy the constraints.  Consequently, the model needs to be generalized to allow for otherwise 

unexplained departures from GARP.  We can do this by introducing additive idiosyncratic errors, 

as is common practice in discrete choice modeling.  We now have the utility function: 

(10) vijt  =  -pjt + βi'xjt  + λiξj + εijt. 

In addition to the βi, this model has J(i,t) parameters per choice occasion, per person (namely, the 

εijt terms).  The Afriat inequalities become: 

(11) -pj'(i,t) + βi'xj'(i,t) + λiξj'(i,t) + εij'(i,t)t   ≥  -pj + βi'xj + λiξj + εijt,  ∀ i, ∀ t, ∀ j ∈ J(i,t). 

If we view these idiosyncratic errors through the lens of the revealed preference literature 

(and estimate the model with an LP), the εijt are now taken as parameters (in econometrics parlance, 

“variables” in programming parlance) which allow us to satisfy these inequalities for every choice 

occasion.8  That is, we are not just fitting “market shares” or the probabilities that consumer 

chooses a product given some distribution of εi, we are jointly estimating permissible sets of βi and 

εi that perfectly explain each observed choice.9  As Kuminoff (2009) discusses, this makes such 

models radically incomplete.  The set of {βi} consistent with GARP are now unbounded:  For any 

βi there are always idiosyncratic errors that could explain a choice.  Accordingly, we need some 

rule for resolving, or at least reducing, this incompleteness, ideally a rule with economic and/or 

statistical foundations (Lewbel 2019). 

A natural choice is to select the subset of permissible {βi, λi, ξj, εi} that minimizes some 

norm of ε, not unlike a least squares problem.  In fact, the revealed preference literature has a long 

tradition of doing just that, to find what is known as “critical cost efficiency” (Afriat 1972, Varian 

1985, 1990).  The basic idea is to find the smallest adjustment to the data needed to make them 

consistent with GARP.  To understand these adjustments, consider as a simple example a violation 

 
8 In this paper, I use the language of econometrics, “variables” are given and the objects to be estimated are 
“parameters.”  Confusingly, in the language of programming, “parameters” are given and the objects to be 
estimated are “variables.” 
9 In this sense, the “solved” errors are comparable to the conditional distribution of parametric RUM errors, 
where one conditions on observed choices (von Haefen 2003). 
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of Samuelson’s Weak Axiom of Revealed Preference (WARP).  If WARP is violated, the house-

hold chooses bundle A when B is available but on another occasion chooses B when A is available.  

Equivalently, the household behaves as if either B was not available the first time or A was not 

available the second time.  With competitive (convex) budget sets the adjustments are equivalent 

to adjustments to the household’s income:  Either it wasted expenditure in the first case (by buying 

A when it could have done at least as well with the cheaper B) or vice versa.  With discrete alter-

natives in characteristic space, we can adapt the idea of the efficiency index by considering how 

much money a household must seemingly throw away when it makes a particular choice.  That is, 

how much does it understate the cost of products it buys, or overstate those it does not buy? 

That is, suppose we simply re-write (11) by regrouping some terms: 

–(pj'(i,t)t – εij'(i,t)t) + βi'xj'(i,t)t + λiξj'(i,t)  ≥  –(pj – εijt) + βi'xj + λiξj,  ∀ i, ∀ t, ∀ j ∈ J(i,t). 

Written this way, the relationship between the errors and money becomes transparent.  The errors 

either lower the effective price of the chosen product or raise it for the products not chosen (or 

both). 

Figure 5 illustrates the procedure.  Again, {p1, x1} ≻R SQ ≻R {p2, x2}, but now these choices 

are not linearly rationalizable.  The indifference curve going through SQ must pass below {p1, x1}, 

which puts {p2, x2} in the strictly-better than set for SQ.  We can explain this apparent contradiction 

with a positive error on the first bundle, as if it had a cheaper price, {p1 – ε1, x1}, which shows up 

as a vertical displacement in the figure, until it appears in the upper contour of the lowest candidate 

indifference curve going through x2.  Minimizing the errors in this way can be thought of as bring-

ing the model as close as possible to the pure characteristics model, introducing idiosyncratic errors 

only when that model violates GARP.  Thus, this generalization nests the pure characteristics 

model, but also can accommodate the concerns raised by Athey and Imbens (2007) about the dif-

ficulty of forcing the pure characteristics model on data that violate it.   

In the application below I minimize the sum of absolute errors.10  I also impose an inde-

 
10 Varian (1990) suggests this is computationally difficult when using his proposed algorithms.  However, 
as I show in the following section, it can easily be built into the objective functions for LP tests of discrete 
choices proposed by Cosaert and Demuynck (2015).  Although the usual absolute value function is non-
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pendence assumption that the ε’s are mean zero in each of 33 data cells, as well as globally orthog-

onal to p and x.  Note also that the distribution of ε can—and typically will—have a large proba-

bility mass at zero (indeed, a degenerate distribution with all mass at zero when GARP is satisfied), 

so the recovered distribution function of ε will not be continuous.   

As McFadden (2014) has observed, in a cross section, the interpretation of idiosyncratic 

errors as fixed inter-agent heterogeneity or as intra-agent heterogeneity across choice alternatives 

(based on a “moment’s fancy”) are observationally equivalent.  By the same token, so too in a 

panel are the interpretation of the errors as either transient tastes and/or shifting quality, or alter-

natively as irrational behavior in the face of unchanging tastes and quality.  That is, ε could be a 

measure of the error, either by the agents or the analyst in observing prices, or it could be a measure 

of how wrong the pure characteristics model is in the first place, how mistaken we are to ignore 

idiosyncratic tastes.11  We can never tell the difference between a model where people do not 

violate GARP, but where there are transient shocks to tastes and/or transient unobserved shocks to 

product quality, and one where there are no such shocks and people do violate GARP.  This ob-

servational equivalence is why we can interpret the errors through either the lens of critical cost 

efficiency or though the lens of random utility.  To my knowledge, this connection between critical 

efficiency in the GARP framework and errors in the RUM framework has not previously been 

pointed out. 

Even starting from the RUM framework rather than the GARP framework, arguably the 

errors still are best interpreted as just a retrofit.  They are a way to improve the fit of an empirical 

model when tastes for characteristics alone cannot fully explain observed choice patterns.  Thus, 

minimizing a metric of the errors makes sense regardless of the interpretation.  If they are inter-

preted as actual violations of GARP, they should be minimized following the logic of Afriat (1972) 

and Varian (1990).  Alternatively, if they are interpreted as idiosyncratic tastes, they still should 

be minimized so that the pure characteristics portion of the model, βi'x, gives the best fit to the data 

 
linear, it is well known that it can be reformulated as an LP by replacing 𝜀 with (𝜀

ା − 𝜀
ି) in the constraints, 

where 𝜀
ା and 𝜀

ି are both defined as positive variables, and minimizing (𝜀
ା + 𝜀

ି). 
11 Of course, as the argument has been developed so far, they also could be a measure of how wrong the 
linearity assumption is.  However, because I have only introduced linearity for simplicity, I ignore this 
possibility here.  Below, I relax linearity, taking a non-parametric approach. 
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possible.  However, when adopting the GARP framework, “the best fit to the data” becomes equiv-

alent to “satisfying GARP,” or finding the pure characteristics model that comes as close to the 

data as possible (i.e., when ignoring the errors).  This is different than the standard RUM approach 

of integrated over the errors to fit market shares. 

In practice, this procedure sometimes will point identify βi for any individual (or group) 

that violates GARP, as the focus is on limiting the norm of ε.  Returning to the policy questions, 

this means that, say, the sum of WTP may involve the sum over point-identified WTP values (for 

individuals that violate GARP) and over set-identified WTP values (for individuals that don’t), 

which of course still results in a set-identified aggregate WTP.  In theory, we cannot rule out the 

possibility that βi is only set identified even for individuals who do violate GARP (if two solutions 

are tied on the criteria of minimizing the norm of ε but result in different WTP values).  In this 

case, one can minimize a weighted sum of the norm of ε and WTP, with sufficient weight on the 

ε’s to guarantee they are minimized, and the range of WTP found only within the set of parameters 

where the norm of ε is tied. 

4.  A Non-Parametric Approach 

So far, to develop the argument on familiar ground, I have relied on a linear utility function.  But 

eschewing such functional form restrictions has been a central feature of the revealed preference 

approach since Samuelson first introduced it.  Figure 6 illustrates the potential importance of re-

laxing linearity.  It repeats the example from Figure 5, with {p1, x1} ≻R SQ ≻R {p2, x2}.  As previ-

ously noted, this choice behavior is not linearly rationalizable.  However, it is easily rationalizable 

by a quasi-concave utility function, such as the indifference curve shown in the figure.  Thus, these 

data are actually consistent with the most general expression of GARP; only the linearity assump-

tion is violated.  With competitive budget sets, Afriat’s theorem allows us to easily test whether 

there is any locally non-satiated utility function that rationalizes the data, using LP.  With discrete 

choices, we can still test for the existence of any strictly monotonic, quasi-concave utility function 

that rationalizes the data (Cosaert and Demuynck 2015).  In Figure 6, the shaded area represents 

the valid region for the indifference curve passing through SQ, given the choice behavior, mono-

tonicity, and quasi-concavity. 

Extending Afriat’s basic logic, Cosaert and Demuynck (2015, Thm. 3) formally demon-

strate that, for a household i, discrete choice data satisfy GARP, and can be represented by a weakly 
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monotonic concave utility function, if and only if there exist numbers vij'(i,t), vij, αෝij, 𝛑ෝij such that 

(12) vij'(i,t)  ≥  vij ,  ∀ t, ∀ j ∈ J(i,t). 

(13) vij - vik  ≥  -αෝij(pj - pk) + 𝛑ෝij(xj - xk),  ∀ t, ∀ j,k ∈ J(i,t). 

The first condition simply states that we must find utilities for chosen bundles j' that exceed those 

for other bundles available when it was chosen.  The second condition states that for any alternative 

j, there is a supporting hyperplane, given by αෝij, 𝛑ෝij, to the indifference curve going through j.  This 

hyperplane represents a vector of shadow prices on the characteristics (times the marginal utility 

of income).  Although the set of alternatives is discrete, the shadow prices represent the budget 

constraint that would have induced a purchase of j over any other alternative k, if, hypothetically, 

we were in a competitive budget setting.  Importantly, they include the marginal utilities of income, 

explaining why a person might choose a bundle A on one choice occasion even though it is dom-

inated by a bundle B available on another occasion.  These conditions differ from the usual Afriat 

inequalities (with competitive budget sets) in that in this case the αෝ, 𝛑ෝ are shadow values that must 

be solved for rather than observed prices.  However, whereas in the usual case we can solve for 

marginal utilities of income given the observed prices, here we solve for shadow prices that are 

not identified to scale separately from the marginal utilities of income. 

I extend Cosaert and Demuynck’s model in two ways.  First, I introduce additive errors 

representing critical efficiency, so Expression (12) now becomes 

(14) vij'(i,t) + εij'(i,t)  ≥  vij - εij,  ∀ t, ∀ j ∈ J(i,t), 

which are the Afriat inequalities accounting for the errors. 

Second, I introduce the policy as an artificial alternative j*.  Maximum WTP can be found 

by solving for the maximum value of WTP such that 

(15) vij*  ≥  vi0,   

(16) vij* - vi0  ≥  -αෝij*[(pj* + WTP) - p0] + 𝛑ෝij*(xj* - x0) 

(17) vi0 - vij*  ≥  -αෝi0[p0 - (pj* - WTP)] + 𝛑ෝi0(x0 - xj*), 

where 0 represents the baseline or status-quo state for comparison.  The intuition is that we are 

looking for the highest possible price that would be associated with the policy and allow us to 
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choose it over the status quo, while still satisfying GARP.  Minimum WTP can be found by max-

imizing the value of WTP when the inequality in Expression (15) reversed.  In that case, we are 

looking for the lowest possible price that would allow us to choose the status quo over the policy 

while satisfying GARP.  The two values bracket WTP.  As written, this problem is non-linear 

because it involves the product of two variables, αෝ and WTP.  In my application, the NLP con-

verged quickly to a solution using modern non-linear solvers like Baron (Khajavirad and Sahinidis 

2018).  However, if analysts find it difficult in their applications, the problem can also be solved 

by nesting an LP within a line search over WTP.12 

5.  Empirical Application to Ecosystem Services 

I apply the methods proposed in this paper to the valuation of improvements in ecosystem services 

in the Southern Appalachian Mountains of the United States.  The data are based on a “conjoint” 

survey, or choice experiment, of households in the southeastern US.  Choice experiments ask re-

spondents to choose an alternative from a hypothetical menu of options, with each option described 

by a set of attributes and a price.13  Such data make for an appropriate illustration of the proposed 

methods, for three reasons.  First, they involve a panel of choices at the individual level, making 

it possible to set identify each βi.  Second, the data involve experimentally controlled characteris-

tics x as well as prices, sidestepping the need for instruments in this case.  Finally, data from choice 

experiments are widely used in marketing studies for new products, as well as in applications to 

environmental policy (e.g. Banzhaf et al. 2016, Lewbel, Linton, and McFadden 2013) and health 

(Mühlbacher and Johnson 2016). 

The area studied includes portions of West Virginia, Virginia, North Carolina, Tennessee, 

and Georgia.  The survey was distributed to residents of those states both online and by mail from 

 
12 Specifically, for the case of maximizing WTP, first bound WTP and begin with an initial guess.  Then, 
simply test for GARP using the Cosaert-Demuynck LP, based on the observed data plus the augmented 
“observation” that the household votes for the policy (or buys the product) at the trial WTP value.  If these 
augmented data satisfy GARP, this WTP value is consistent with the observed behavior.  The initial guess 
can be set at the lower bound and a new, higher guess made.  If the data are not consistent with GARP, the 
guess is too high and can be set at the upper bound.  This process can be repeated until the WTP range 
converges to a tolerable limit.  A similar process can be used for minimizing WTP.  When the initial data 
do not satisfy GARP, the same procedure can be used, constraining the sum of absolute errors to its value 
without the augmented policy “observation.” 

13 See, e.g., Ben-Akiva, McFadden, and Train (2019), Johnston et al. (2017), or Mühlbacher and Johnson 
(2016) for an overview of choice experiments.   
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October 2009 to December 2010.  It introduces the state of ecosystem services in the region, with 

quantitative information in three dimensions:  streams and fish, forests, and birds.  Based on sci-

entific models, it describes 20 percent of small streams in high-elevation areas as being affected 

by acid precipitation (about 60,000 streams).  Additionally, the survey describes six species of fish 

affected in the streams: brook trout, rainbow trout, mottled sculpin, longnose dace, rosyside dace, 

and fantail darter.  It also describes 3% of the forested area as affected by acidification.  Finally, it 

describes three bird species (waterthrush, crossbill, and ovenbird) as harmed by acidification, with 

their populations now at 65% of what they once were. 

The survey next tells respondents that a program has been proposed to improve the streams, 

forests, and affected bird populations in the region.  After describing the program, the survey ex-

plains that the respondent’s state government will fund its share of the liming program with a 

revenue bond that will be paid off by additional state income tax payments for the next 10 years.  

Next, the survey describes a set of improvements to streams, forests, and bird populations that the 

program could achieve over a ten-year period.  It provides a sequence of six choice sets, each 

including the status quo or “no program” option plus one to two variants of the program.  The 

choice alternatives range from no improvement in each dimension, to a maximal improvement of 

45,000 streams (15% of all streams), 625,000 acres of forest improvement (2.5% of all forests) or 

a 30 pp improvement in the three bird populations (from 65% of what they once were to 95%).  

Respondents indicated whether they would be willing to support the program and the indicated 

annual cost to them over ten years.  Collectively, 1,512 respondents evaluated 293 unique bundles 

of the three attributes on at least one choice occasion, or 1,651 bundles when also considering 

different costs.14  The alternatives were selected randomly using a Bayesian experimental design 

with updating, to maximize the statistical efficiency of the variable space.  See Banzhaf et al. 

(2016) for additional details about the survey and its implementation. 

Based on these data, I evaluate the mean WTP of one bundle of possible improvements to 

ecosystem services from a reduction in acidification from air pollution, in particular improving 

 
14 An additional 1,678 respondents faced one or two choice occasions in a traditional dichotomous choice 
contingent valuation format.  These respondents were included in the original parametric analysis of the 
data in Banzhaf et al. (2016) but were excluded here. 
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15,000 streams in the region, 250,000 acres of forest, and 15 pp of bird populations.  These im-

provements are within the range of the data considered by the survey.  I assume they take 50 years 

to reach full maturity, and that they then continue indefinitely.  I report annualized WTP for this 

full stream of services (i.e., as of year 50) in present value terms, using a discount rate of 3%. 

For comparison purposes, I first compute values using a simple parametric RUM, a linear 

logit model imposing homogeneity in taste parameters, with heterogeneity entering only through 

the additive errors.  Parameters include the marginal utility of money α and a vector β for streams, 

forest, and birds, plus a dummy variable for the status quo option.  This dummy can be interpreted 

as representing the effect of a reference point, the taste for “doing something” if positive or “not 

interfering” if negative.  Alternatively, it can simply be interpreted as adding a kink to an otherwise 

linear indifference curve, to improve the fit to the data.  Other than this dummy, I do not include 

product-specific unobservables ξj in the model, as in this application there are no obvious “prod-

ucts” to model.  After the logit, I estimate the linear GARP alternative, with no distributional as-

sumptions on the errors, based on the logic of Theorem 2.  This model finds the vector β that 

minimizes the additive errors needed to satisfy GARP for a representative consumer.  In this case, 

the panel structure of the data can be thought of as individuals representing separate observations 

of a representative consumer.   

Table 1 displays the results.  Because the policy relevance of tastes for the status quo is 

controversial (Banzhaf et al. 2016), the table shows WTP estimates respectively ignoring or in-

cluding this parameter. The first column shows the results for the standard multinomial model.  

Mean WTP is $52 if we ignore the effect of the status quo dummy when calculating WTP, with a 

95% confidence interval (based on standard errors clustered by individual respondent) spanning 

$40 to $64.  If we allow for the disutility of interfering with the status quo when evaluating the 

policy, mean WTP falls to $21, with a confidence interval of $7 to $35.  The average absolute 

difference in logit errors between any two options, normalized by the marginal utility of income, 

is $146, indicating substantial randomness in this RUM relative to the fit of the parameters. 

The second column shows the results for the GARP approach to estimating a linear RUM 

proposed in this paper, again imposing homogeneity in β.  This model is essentially the same as 

the logit version, but imposes no distributional assumptions on the additive errors.  Because this 

model imposes homogeneity in the face of what is likely substantial heterogeneity, all the burden 
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of the model is on satisfying GARP as close to possible, with no weight given to altering the 

parameters to minimize or maximize WTP.  Thus, this model is point identified.  Mean WTP is 

estimated to be $25 when omitting the status quo and $40 when including it.  The confidence 

intervals, based on cluster-bootstrapping the data by respondent and recalculating the LP for each 

bootstrapped sample, are fairly tight, at about +/- $3.  These estimates are in the same range as the 

linear logit model, but they flip the relative order of the models with and without the status quo.  

As we would expect, the GARP-based LP approach drives the errors much lower.  In other words, 

it comes much closer to the pure characteristics model.  The average |ε| is only $12 versus $146 

for the logit, and 80% of observations and 7% of households require no ε at all.  However, it has a 

similar record as the logit at predicting choices, with each predicting about 50% correctly based 

only on the characteristics.  When integrated over the error distribution, the GARP model does 

somewhat better at predictions in this case, at 49% correct vs. 42%. 

The assumption of homogeneity imposed in these models is a strong one, but it can be 

relaxed both with parametric methods (e.g. random coefficients, or mixed, logit) as well as with 

the GARP-based methods suggested in this paper.  Table 2 presents results allowing for unob-

served heterogeneity.  Again for comparison purposes, the first column shows results using a logit 

model, with random coefficients on the status quo dummy distributed normal and random coeffi-

cients on streams and forests distributed log-normal (to impose positive values).  (The coefficient 

on birds is kept homogeneous, as attempts to estimate heterogeneity were fragile.)  Heterogeneity 

has little effect on the estimate when ignoring the status quo dummy, which is now $49 (CI $35 to 

$64), compared to $52 in the model with homogeneity.  However, it now increases it substantially 

when including the status quo dummy, from $21 to $77 (CI $55 to $100).  Including heterogeneity 

in the random parameters allows the scale of the additive logit errors, relative to the model, to fall, 

with the average absolute value of the difference in errors now at $75 instead of $146. 

The next pair of columns shows the estimates using the linear GARP-based approach with 

random coefficients, as in Theorem 2.  As most individuals satisfy GARP, the model is now only 

set identified, with a continuum of βi satisfying GARP but having different implications for WTP.  

The two columns in the pair show the results for the argmin and argmax in {βi} for the WTP 

objective.  Plausible mean WTP ranges from $36 to $259 when ignoring the status quo dummy, 

and -$130 to $190 when including it.  Both values bracket the respective range from the logit 
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model, although this result is not guaranteed.15  The WTP range reflects model uncertainty, which 

is large, but sampling variance remains small, with tight confidence intervals.  (To compute stand-

ard errors, we can now simply take the sampling distribution across households rather than boot-

strap.)  Again, we see that the model shrinks the additive errors much more than the logit model 

assumes, with average errors now $2 rather than $75 for logit and $10 for the GARP approach 

without heterogeneity, and with about 97% of observations having no need of errors to fit the data.  

Seventy-four percent of households have choice patterns that are linearly rationalizable, so require 

no error at all to fit the data.  Finally, the GARP model can find 93% of choices correctly focusing 

only on the characteristics.  This prediction rate falls to 81-82% when integrating over the error 

distribution, but this is substantially better than the mixed logit model, which correctly predicts 

only 39% of choices.16 

The remaining columns use the non-parametric GARP-based approach of Section 4.  In 

this case, separate models were estimated with and without the status quo dummy.  Not surpris-

ingly, these models are able to reduce GARP violations, with mean errors falling to about $0.36 to 

$0.47 depending on the model, and with 98% of observations and 88 – 92% of households having 

no error.  The plausible range of mean WTP actually is now $44 to $210 for the model without 

status quo, which is not much different than the linear model.  However, the range grows rapidly 

for the model with the status quo, at -$282 to $224.  Because, in this application, so much of the 

mass of data is at the status quo, it is apparently difficult to nonparametrically identify WTP for 

policy improvements (without any linear interpolations between data points) while controlling for 

the status quo nonparametrically as well.  Nevertheless, it should be noted that these values do 

continue to bracket the point estimates from the mixed logit model.  Finally, in the bottom rows 

we see that the models’ predictions are better than the linear version, and remain much better than 

the mixed logit. 

For policy analysis, the non-parametric model without the status quo dummy is probably 

the most appropriate, as it is the most general but does not allow an arbitrary reference point to 

 
15 There is nothing that guarantees the GARP-based approach will always bound the logit estimates.  Consider for 
example a case where all the data satisfy GARP.  The GARP-approach will set identify a range of WTP using a pure 
characteristics model (with no idiosyncratic errors).  The logit estimator conditions on its distributional assumption, 
which can take it outside the range of the GARP model. 
16 Note it is not possible to compute the predictions in pure characteristics space for the mixed logit, except at the 
“average tastes,” since the value of the coefficients for any one given respondent is unknown. 
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affect policy.  With 13.3 million households in study area, and using a discount rate of 3%, even 

the most conservate estimate of $13.25 implies an aggregate present value of $10.4 billion for 

ecosystem service improvements that might be realized from a reduction in air pollution.  When 

added to the substantial health benefits of most air pollution control policies, these benefits are 

likely to outweigh the costs of most policies. 

5.  Conclusions 

This paper shows how, starting with a RUM framework, one can nonparametrically set-identify 

the answers to policy questions using only the Generalized Axiom of Revealed Preference 

(GARP).  This approach recasts the RUM errors as departures from GARP, to be minimized using 

a minimum-distance criterion, and provides another avenue for nonparametric identification of the 

RUM model.  When GARP is satisfied, this approach easily estimates the pure characteristics 

model.  When GARP is violated, it gets as close to that model as possible.   

Given my use of survey data, it was plausible to treat all variables as exogenous.  As Berry 

and Haile (2016, 2023) have emphasized, valid instruments are the core foundation of RUMs.  

Future work might consider how to introduce additional exclusion restrictions.  For example, if 

prices p are endogenous one might estimate E[p|x,z] for additional instruments z and then mini-

mize errors to satisfy GARP over the conditional expectation of p rather than p itself, not unlike 

the approach taken by Blundell, Browning, and Crawford (2003).  The potential to apply general-

ized instrumental variables (Chesher and Rosen 2017) might be another fruitful avenue to pursue. 

Future work might also consider the implications of this approach for designing choice ex-

periments.  When using surveys or conducting lab experiments, researchers have considered algo-

rithms to update the bundles of characteristics offered, to provide the best information for estimat-

ing a parametric utility function (e.g. Sándor and Wedel 2005).  Much earlier, using a revealed 

preference approach, Mas-Colell (1978) showed that, by increasing the number of observations, 

one can identify the underlying preferences for the consumer, in the case of competitive budget 

sets.  Further work might consider how Mas-Colell’s insight might be applied to discrete choice 

sets.  As highlighted by the simulations, with experimental data prices can thus be adjusted effi-

ciently, while holding incomes and tastes constant.  In contrast to controlled experiments, in the 

real world incomes and tastes may change between observations.  Blundell, Browning and Craw-
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ford’s (2003, 2008) suggestions to adjust budget sets for changes in income might also be com-

bined with the approaches suggested in this paper. 

The paper illustrates the approach by estimating bounds on the values of ecological im-

provements in the Southern Appalachian Mountains.  In the most general model, WTP is bounded 

between $44 and $210 using the GARP-based approach, and point identified at $77 using a mixed 

logit model.  While such bounds may be less satisfying than a point identified model, they repre-

sent an honest appraisal of modeling uncertainty and can help take the “con” out of econometrics 

(Leamer 1983).   
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Figure 1.  Set Identifying the Linear RUM with Random Coefficients 

 

In this example, we observe {p1, x1} ≻R SQ ≻R {p2, x2}.  The shaded area depicts the set {βi} of linear taste 
parameters consistent with these data. 
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Figure 2.  Asymptotic Point identification of the Linear RUM with Random Coefficients 

 

In this example, we observe {p1, x1} ≻R {p3, x3} ≻R SQ ≻R {p4, x4} ≻R {p2, x2}.  The dark shaded area 
depicts the set {βi} consistent with these data, which has shrunk from the light shaded area of Fig. 1. 
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Figure 3.  Bounding Willingness to Pay Relative to the Status Quo 

 

The figure illustrates the set of plausible WTP values for moving from the status quo to a bundle x*. 
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Figure 4.  Bounding the Highest Price for a New Product 

 

The figure illustrates the plausible range of the highest price for an unobserved new good when, in this 
example, we observe that x1 is currently the preferred good and the outside option is preferred to x2.   
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Figure 5.  Rationalizing the Data with Idiosyncratic Errors 

 

In this example, we observe {p1, x1} ≻R SQ ≻R {p2, x2}, which is not linearly rationalizable.  The vertical 
distance 𝜀1 represents the minimum adjustment to p1 that would rationalize the data. 
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Figure 6.  Rationalizable but not Linearly Rationalizable 

This figure repeats the example of Fig. 5.  The blue shaded area shows the permissible area for indiffer-
ence curves going through the status quo.   
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Table 1.  Results imposing Homogeneous Preferences 

 Multinomial Logit Linear GARP 

Mean WTP  
without Status Quo 

$52.04 
($40.32 - $63.76) 

$25.31 
($21.31 - $29.30) 

Mean WTP  
with Status Quo 

$20.55 
($6.53 - $34.57) 

$40.12 
($36.86 - $43.38) 

Average |ε| $146.04 $11.83 

Pct ε=0 0% 80.3% 

Pct of hholds Σ|ε|=0 0% 6.7% 

Pct Correctly Predicted, 
Pure Characteristics 50.1% 50.7% 

Pct Correctly Predicted, 
Conditioning on F(ε) 

41.7% 49.4% 

The numbers in parentheses represent 95% confidence intervals.  All standard errors clustered by house-
hold.  For Linear GARP, the standard errors are based on a clustered bootstrap with 500 draws. 
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Table 2.  Results with Heterogeneous Preferences 

 Mixed 
Logit 

Linear  
GARP 

Non-Parametric GARP  
(without status quo) 

Non-Parametric GARP 
(with status quo) 

  Min Max Min Max Min Max 

Mean WTP  
without Status Quo 

$49.07 
(34.56 - 63.58) 

$36.48 
(33.33 - 39.62) 

$259.40 
(249.36 - 269.43) 

$44.35 
(40.98 - 47.73) 

$210.37 
(199.50 - 221.23) N/A N/A 

Mean WTP  
with Status Quo 

$77.40 
(55.08 - 99.71) 

-$129.90 
(-143.34 - -116.46) 

$189.95 
(178.75 - 201.15) N/A N/A -$281.74 

(-295.83 – -267.66)
$223.61 

(212.68 – 234.54) 

Avg |ε| $74.96 $2.00 $2.00 $0.46 $0.47 $0.36 $0.37 

Pct ε=0 0% 97.2% 97.2% 97.6% 97.7% 98.4% 98.4% 

Pct of hholds Σ|ε| = 0 0% 74.0% 73.6% 88.0% 88.0% 92.4% 92.4% 

Pct Correctly Predicted, 
Pure Characteristics N/A 92.8% 92.8% 95.4% 95.4% 97.0% 97.0% 

Pct Correctly Predicted, 
Conditioning on F(ε) 38.5% 82.2% 81.3% 92.7% 92.4% 95.2% 95.0% 

The numbers in parentheses represent 95% confidence intervals.  All standard errors clustered by household.   
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Appendix:  Results from Simulations 

To gauge the weak identification of the GARP-based approach, I employ simulations and estimate 

the rate at which the identified bounds on WTP converge to the known true value.   

Following the premise of Theorem 1, I assume that utility takes a linear form and that 

households choices are rationalizable.  Specifically, I assume they have tastes for ecosystem im-

provements comparable to those estimated in Section 5, with tastes for improvements to streams, 

forests, and bird populations close to those estimated in the simplest model of that section, but 

slightly adjusted so that the true WTP for the policy in the Southern Adirondacks is $30.  (As 

discussed in Section 5, the policy involves an improvement in 15,000 streams, 250,000 acres of 

forest, and 15 pp of bird populations.) 

I randomly draw choice alternatives with these three characteristics, on a uniform distribu-

tion between 0 and 2x the policy-level improvements.  In one version of the simulations, I also 

randomly draw prices on a uniform distribution between zero and $180.  I then create choice oc-

casions with three choice alternatives each, two of these draws plus a status quo option of no 

change (at no cost).  Next, using the true utility parameters, I compute which alternative the house-

holds would choose at each choice occasion.  This constitutes all the data for the simulations.  

Next, I estimate the model with the following total numbers of choice occasions:  {5, 10, 15, …, 

50, 60, 70, …, 150, 200, 250, …, 500, 600, 700, …, 1000, 2000, 3000, …, 10000}.  Last, I repeat 

this process 100 times. 

One potential criticism of this simulation is that the prices are drawn at random and are 

even independent of the other attributes.  In an experimental setting, such as that of Section 5, we 

would normally compute a better guess at the price, e.g. with higher-quality alternatives being 

assigned higher prices.  Too, in a market setting we would expect the equilibrium to have con-

verged on prices that are closer to WTP.  Accordingly, in a second version of the simulations, at 

each addition of choice occasions to the data, I use the previous iteration’s estimates to take a guess 

at the WTP for the new alternatives coming in, confronting the households with those prices in 

their new choice sets. 

Figure A1 shows the results.  The figure in the upper-left panel summarizes the upper and 

lower bounds across simulations.  The inner (solid) lines show the median upper and lower bounds 

respectively, across simulations.  The outer (dashed) lines show the 95th percentile of all upper 
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bounds across simulations and the 5th percentile of all lower bounds, at each observed number of 

choice occasions.  (Note that each data point in this figure could come from any simulation.)  As 

shown in the figure, the spreads are very wide at first and do converge rapidly, but improvements 

begin to stall.  The probability of drawing the needed information becomes very low.  The upper 

right panel shows a similar figure but with “smart” prices (i.e. updated based on previous rounds 

within the iteration).  We now get much more rapid convergence, with, for all practical purposes, 

point identification at about 50 choice occasions. 

The lower panels show the respective results for one representative simulation.17  For the 

totally random sampled prices, we can see flat portions in the curves, where the new data does not 

help at all.  Moreover, we still have not reached perfect point identification at 1,000 choice occa-

sions.  In contrast, in the “smart” sample, there is steady convergence, with point identification at 

about 50 choice occasions.   

Table A1 presents the simulation results in tabular form.  Each row of the table is a given 

number of choice occasions.  The columns represent the 5th, 50th, and 95th percentiles (across sim-

ulations) in the gap between the estimated max and min of WTP.  With only five choice occasions, 

the median range in the identified set of WTP is $52, but it can be over $100 in some simulations.  

By 50 choice occasions, the range falls to a typical level of $9 with random sampling, which may 

be as good as many applications in the literature today when accounting for model uncertainty.  

However it falls to $0.04 with “smart” sampling.  From there, it quickly falls to zero with “smart” 

sampling, but with random sampling it is still $0.04 with as many as 10,000 choice occasions.   

The simulations illustrate weak convergence in principle but also highlight the practical 

importance of optimal sampling.  

 
17 To pick a representative example, I first computed the rate of convergence for each simulation.  Keeping the middle 
quintile, I then computed, for each remaining simulation, the average gap between the upper and lower bounds on 
estimated WTP at each number of choice occasions, took the average over the number of choice occasions, and found 
the simulation closest to that average. 
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Figure A1.  Convergence to point identification in simulations. 
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Table A1.  Convergence to point identification in simulations. 

 Random sampling of prices “Smart” sampling of prices 
# choice 
occasions 

5th  
percentile 

Median 
95th  

percentile 
5th  

percentile 
Median 

95th  
percentile 

5 $19.21 $52.28 $101.88 $19.21 $52.28 $101.88 
10 $14.78 $32.70 $65.18 $8.58 $21.35 $50.94 
25 $7.40 $16.19 $30.43 $0.69 $1.88 $5.88 
50 $3.95 $9.05 $16.88 $0.01 $0.04 $0.13 
100 $1.84 $4.74 $9.63 $0 $0 $0 
200 $1.00 $2.26 $4.58 $0 $0 $0 
300 $0.78 $1.46 $3.02 $0 $0 $0 
400 $0.50 $1.08 $2.20 $0 $0 $0 
500 $0.36 $0.87 $1.67 $0 $0 $0 
1000 $0.17 $0.45 $0.90 $0 $0 $0 
2000 $0.07 $0.22 $0.53 $0 $0 $0 
3000 $0.06 $0.16 $0.33 $0 $0 $0 
4000 $0.05 $0.11 $0.26 $0 $0 $0 
5000 $0.03 $0.08 $0.20 $0 $0 $0 
10,000 $0.02 $0.04 $0.12 $0 $0 $0 

The table shows the gap between the upper and lower bounds on estimated WTP, by number of 
choice occasions included, at three percentiles across the distribution of simulations. 


